Your browser doesn't support javascript.
Шоу: 20 | 50 | 100
Результаты 1 - 3 de 3
Фильтр
Добавить фильтры

база данных
Годовой диапазон
1.
Thorax ; 78(8): 741-742, 2023 Aug.
Статья в английский | MEDLINE | ID: covidwho-20238575
2.
Thorax ; 78(8): 816-824, 2023 Aug.
Статья в английский | MEDLINE | ID: covidwho-2286329

Реферат

BACKGROUND: Despite the availability of COVID-19 vaccinations, there remains a need to investigate treatments to reduce the risk or severity of potentially fatal complications of COVID-19, such as acute respiratory distress syndrome (ARDS). This study evaluated the efficacy and safety of the transient receptor potential channel C6 (TRPC6) inhibitor, BI 764198, in reducing the risk and/or severity of ARDS in patients hospitalised for COVID-19 and requiring non-invasive, supplemental oxygen support (oxygen by mask or nasal prongs, oxygen by non-invasive ventilation or high-flow nasal oxygen). METHODS: Multicentre, double-blind, randomised phase II trial comparing once-daily oral BI 764198 (n=65) with placebo (n=64) for 28 days (+2-month follow-up). PRIMARY ENDPOINT: proportion of patients alive and free of mechanical ventilation at day 29. Secondary endpoints: proportion of patients alive and discharged without oxygen (day 29); occurrence of either in-hospital mortality, intensive care unit admission or mechanical ventilation (day 29); time to first response (clinical improvement/recovery); ventilator-free days (day 29); and mortality (days 15, 29, 60 and 90). RESULTS: No difference was observed for the primary endpoint: BI 764198 (83.1%) versus placebo (87.5%) (estimated risk difference -5.39%; 95% CI -16.08 to 5.30; p=0.323). For secondary endpoints, a longer time to first response (rate ratio 0.67; 95% CI 0.46 to 0.99; p=0.045) and longer hospitalisation (+3.41 days; 95% CI 0.49 to 6.34; p=0.023) for BI 764198 versus placebo was observed; no other significant differences were observed. On-treatment adverse events were similar between trial arms and more fatal events were reported for BI 764198 (n=7) versus placebo (n=2). Treatment was stopped early based on an interim observation of a lack of efficacy and an imbalance of fatal events (Data Monitoring Committee recommendation). CONCLUSIONS: TRPC6 inhibition was not effective in reducing the risk and/or severity of ARDS in patients with COVID-19 requiring non-invasive, supplemental oxygen support. TRIAL REGISTRATION NUMBER: NCT04604184.


Тема - темы
COVID-19 , Respiratory Distress Syndrome , Humans , COVID-19/complications , TRPC6 Cation Channel , SARS-CoV-2 , Respiratory Distress Syndrome/etiology , Oxygen , Treatment Outcome
3.
Chem Biol Interact ; 362: 109982, 2022 Aug 01.
Статья в английский | MEDLINE | ID: covidwho-1850754

Реферат

In this Letter to the Editor supportive data were presented to a recent paper published in this journal reporting the involvement of TRP channels in COVID-19 pneumonia and its role for new therapies. Since gene expression of TRP channels was found in human lung tissues the protein was not being reported so far. TRP channels are supposed to be involved in the pulmonary inflammation and its symptoms such as fever, cough and others. Here, TRPC6 was investigated in tissues of normal human lungs and of SARS-Cov-2 infected lungs in a preliminary study. Tissue was obtained post mortem from anatomical body donations during dissections and during pathological dissections (13 normal, 4 COVID-19 pneumoniae) and processed for immunohistochemistry. In normal lungs TRPC6 was found in the ciliated epithelium, in the wall of larger lung vessels and in the alveolar septa. In COVID-19 pneumonia the distribution of TRPC6 was different. Inflammatory lesions, cellular infiltrates, hyaline membranes and fibrosis were labelled intensively as well as dilated capillaries. These observations are from four patients with COVID-19 pneumonia.The observations do not elucidate the molecular mechanisms but support the view that TRPC6 channels are involved in normal physiology of normal human lungs and in COVID-19 pneumonia. TRPC6 might aggravate SARS-2 induced inflammation and could be a target for inhibiting drugs.


Тема - темы
COVID-19 , Pneumonia , Humans , Lung/pathology , Pneumonia/metabolism , Pneumonia/pathology , SARS-CoV-2 , TRPC6 Cation Channel/metabolism
Критерии поиска